(-3y^2)(13y^2)-(2y)(14y)(-5y)+9=0

Simple and best practice solution for (-3y^2)(13y^2)-(2y)(14y)(-5y)+9=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3y^2)(13y^2)-(2y)(14y)(-5y)+9=0 equation:


Simplifying
(-3y2)(13y2) + -1(2y)(14y)(-5y) + 9 = 0

Remove parenthesis around (-3y2)
-3y2(13y2) + -1(2y)(14y)(-5y) + 9 = 0

Remove parenthesis around (13y2)
-3y2 * 13y2 + -1(2y)(14y)(-5y) + 9 = 0

Reorder the terms for easier multiplication:
-3 * 13y2 * y2 + -1(2y)(14y)(-5y) + 9 = 0

Multiply -3 * 13
-39y2 * y2 + -1(2y)(14y)(-5y) + 9 = 0

Multiply y2 * y2
-39y4 + -1(2y)(14y)(-5y) + 9 = 0

Remove parenthesis around (2y)
-39y4 + -1 * 2y(14y)(-5y) + 9 = 0

Remove parenthesis around (14y)
-39y4 + -1 * 2y * 14y(-5y) + 9 = 0

Remove parenthesis around (-5y)
-39y4 + -1 * 2y * 14y * -5y + 9 = 0

Reorder the terms for easier multiplication:
-39y4 + -1 * 2 * 14 * -5y * y * y + 9 = 0

Multiply -1 * 2
-39y4 + -2 * 14 * -5y * y * y + 9 = 0

Multiply -2 * 14
-39y4 + -28 * -5y * y * y + 9 = 0

Multiply -28 * -5
-39y4 + 140y * y * y + 9 = 0

Multiply y * y
-39y4 + 140y2 * y + 9 = 0

Multiply y2 * y
-39y4 + 140y3 + 9 = 0

Reorder the terms:
9 + 140y3 + -39y4 = 0

Solving
9 + 140y3 + -39y4 = 0

Solving for variable 'y'.

The solution to this equation could not be determined.

See similar equations:

| 5-5x+2=0 | | 4y-6y=12-8 | | Y-2=3x-3 | | 8y^2-4y^2=0 | | 5-5x+2=I | | v+15=-27 | | 24000-23550= | | 4t-1=5(t+3) | | 250*96= | | 3x+3x-5=37 | | 8(y-3)=6y-36 | | 225*96= | | -17-5x=10-8x | | 1/8=1/5 | | Y+3=-5x+5 | | 19650-19200= | | 2x+6x-9=47 | | -1=4+y | | 8(x+4)+3(x+4)=7x-7 | | 200*96= | | 16800-17700= | | 175*96= | | -4(x+3)=3x-5 | | 14400-15750= | | P+(p+15)+(2p+15)=180 | | 4a-32= | | 150*96= | | 24=-26+b | | F=(3) | | 8x^5-9n^2+4=0 | | 6x-12=4x-8 | | 4050+78(150)-96(150)= |

Equations solver categories